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1 Introduction

An indifference (or unit interval or proper interval) graph is one that can be realized
on the line with vertices adjacent whenever they are at most some fixed distance apart.
There are applications of indifference graphs in many areas including biology, communication,
economics, psychology, archaeology, transportation, and ecology (see Roberts (1976, 1978)).
Another area of application is perception. Goodman (1977) studies predicates that can be
used to order stimuli (e.g. objects, sounds). Roberts (1968) shows that some of the predicates
studied by Goodman lead precisely to indifference graphs. Roberts (1973) discusses how
visual perception in a static view can be modeled by indifference graphs. Stimuli that are
close in some sense are indistinguishable. A natural extension is where there are p > 2
types of objects to be ordered, where the stimuli types are independent. Such stimuli types
might include objects, colors, and light intensity. Goodman (1977) considers the extension to
two dimensions natural and applies some of his predicates to the grid. These ideas suggest
extending the indifference graphs to two and higher dimensional grids. This gives us an

extension of indifference graphs that we call gridline indifference graphs.

Still another motivation for studying gridline indifference graphs is cluster theory. Often
one wishes to aggregate data into groups that share some common property. If each datum
corresponds to a vertex and edges are between data sharing the property, then we seek a group
of pairwise adjacent vertices. When vertices are along a line and such groups correspond to
intervals of fixed length then we obtain an indifference graph (Roberts, 1978). If clustered
vertices are grouped in the same way along a tree structure rather than a line, then we

obtain a tree-clique graph. These graphs were introduced by Batbedat (1990) (who called



them arba graphs), and were studied by Gutierrez and Oubina (1996), who identified several

metric characterizations.

Before stating three important characterizations of indifference graphs, we present some
graph theory definitions. We follow the terminology of Bondy and Murty (1976); any un-
defined terms can be found there. A graph is a pair G = (V, E) where V' (or V(G)) is the
vertex set and the edge set £ (or E(G)) is a subset of (1) := {uv(=vu): u and v are distinct
vertices}. All graphs are finite and simple, that is, they have no multiple edges or loops,
and are undirected. With an abuse of language, and when no confusion is possible, we often
refer to a vertex or edge as being in a graph G, and write for example v € G or uw € G

instead of v € V(G) or uw € E(G).

An indifference graph is a graph that can be realized on the line such that two vertices
are adjacent whenever the distance between them is at most €, where ¢ € R" is a fixed

number.

A (partial) subgraph G' of a graph G = (V, E) is a pair (V', E’) where V' C V and
E' C (‘;) NE,ie. E'is asubset of the edges in E restricted to V'. An induced subgraph G’
of G is a subgraph where E' = (‘;) NE, i.e. E'is all of the edges of F restricted to V'. If G
and H are graphs, then G is H-free means no induced subgraph of G is of type (isomorphic
to) H. A triangulated graph is a graph having no hole — an induced cycle of length at least

four.

Figure 1.1 shows a G, a net, and a claw (also called a K 3). (A net is in fact the com-
plement of Gy, that is, it is obtained from G|y by removing each edge and including every

other possible edge.)



The following theorem characterizes indifference graphs in terms of forbidden subgraphs.

We obtain the analogous result for higher dimension indifference graphs in section 3.

Theorem 1.1 (Roberts, 1969): Suppose G is a graph. Then

(a) G is triangulated

G is an indifference graph <= { (b) G is Go-, net-, and claw-free i

A clique is a set of vertices that induce a complete subgraph — a graph in which all
vertices are adjacent — and which is maximal (with respect to set inclusion). Sometimes a
clique refers to the complete subgraph induced by these vertices; which meaning of clique is
intended will be clear from the context or will be specifically stated. An extreme point is a
vertex a that is simplicial, that is, is in only one clique, and, if ax,ay € G where z and y
are each in some clique other than the one containing a, then there is a vertex z such that
xz,yz € G and az ¢ G. The closed neighborhood of a vertex v, denoted N{v], is the vertex
set consisting of v and all of its neighbors. The reduced graph of graph G, denoted G*, is
defined as follows: Let R be the equivalence relation on V(G) defined by zRy whenever
Nlz] = NJy]. Denote by [z] the equivalence class containing x. Define G* by taking the
vertex set to be the equivalence classes and take [z][y] € E(G*) whenever xy € E(G). We
say that G* is reduced (or canonical), and note that no two vertices of G* have the same

closed neighborhood.

The following theorem characterizes indifference graphs in terms of extreme points in
the reduced graph. We obtain a partial analog for higher dimension indifference graphs in

section 5.



Theorem 1.2 (Roberts, 1969): Suppose G is a graph. Then

For every induced connected subgraph H of G,

i indiff h < .
G is an indifference grap { H* has at most two extreme points [ |

A tree is a connected graph containing no cycle. A spanning tree of a graph G is a
(partial) subgraph of G that is a tree and having the same vertex set as G. It is well known
that every connected graph has a spanning tree. A spanning forest F' of a graph G is a
spanning subgraph such that, for every component G’ of G, F restricted to G’ is a spanning

tree of G'.

A tree-clique (or arba) graph is a graph G having a spanning forest F' such that ev-
ery clique of G (thought of as a set of vertices) induces a connected subgraph in F. We
call F' a compatible forest for G. The components of F' are called compatible trees for the

corresponding components of G.

The following theorem, which follows from Theorem 1 of Roberts (1971) and which was
noted by Gutierrez and Oubina (1996), characterizes indifference graphs in terms of tree-
clique graphs. We obtain the analogous result for higher dimension indifference graphs in

section 4.

Theorem 1.3: Suppose G is a graph. Then

(G is a tree-clique graph having

G is an indifference graph <= { a path as a compatible tree

(In this case the path is hamiltonian — it contains every vertex.) [ |

We use the abbreviation ‘WLOG’ to mean ‘without loss of generality’. The abbreviation



'iff” means ’if and only if’.

2  Graph Structure and operations

A gridline indifference graph (or GIG for brevity) is a graph that can be realized in the
plane with vertices adjacent whenever they are on a common vertical or horizontal line and
are at most some fixed distance € apart, € > 0. A line always refers to a vertical or horizontal

line, or, more generally, a line that is parallel to one of the axes.

For most of this paper we restrict ourselves to GIG’s that are triangulated. In that case,
a GIG cannot ”grow back into itself”. This restriction is consistent with indifference graphs,

which are triangulated and the applications of which often deal with the dimension of time.

Two facts about GIG’s are immediate: First, any GIG can be realized in the plane with
vertices only at positive integral points and using an appropriate € — hence the name. Second,
we can use a fixed distance e, for the horizontal direction and a fixed distance ¢, for the

vertical direction where €, # €,.

A p-dimensional gridline indifference graph (or p-d GIG, for brevity), where p € IN, is
a graph that can be realized in IR? with vertices adjacent whenever they are on a common
line that is parallel to some axis and the distance between them is at most €, where e € R"

is a fixed number.

A [line always refers to a line parallel to some axis. Like GIG’s, any p-d GIG can be
realized with vertices only at positive integral points, and we can use a different ¢; for each

dimension 7, 1 = 1,2,...,p.



Every use of the term realization refers to a realization of a (p-d) GIG, unless specified

otherwise. Given a realization, any use of € refers to the e specified in the definition above.

Vertex c is between a and ¢ in a realization whenever a, b, and ¢ are pairwise adjacent
and b is (geometrically) between a and ¢. Two vertices are beside each other in a realization

whenever they are adjacent and there is no vertex between them.

For some graphs, betweenness can be viewed in an abstract way. Vertex b is betwizt a
and ¢ whenever a, b, and ¢ are pairwise adjacent and |aVe| > max{|aVb|, |bV¢|}, where
zVy = {v € V : v is adjacent to = or y but not both}. Goodman (1977) shows that in a
reduced indifference graph, betweenness and betwixtness are equivalent concepts. Roberts
(1971) uses the concepts of besideness and betwixtness in reduced graphs to characterize

indifference graphs.

In the remainder of this section we give some important definitions and observations
about realizations, many of which are intuitive but nevertheless require formal statements.
All observations in this section are stated without proof; proofs can be found in Peterson

(1995).

Observation 2.1 (Weak Mapping): Suppose G is a realization. Then the following two

statements hold.

(1) Vertex b is between a and ¢ = {a, b, ¢} induces a triangle (a complete subgraph on

three vertices)



2) e Vertex b is geometrically between
vertices a and ¢ —> a and c are nonadjacent
e o« and b are nonadjacent [ |

The term ‘weak mapping’ comes from the weak mapping rule (Goodman, 1977), and
its use here is justified by Roberts (1971). Suppose W is a linear order on the vertices
of a graph G. After Roberts (1971), we say that W is compatible with G whenever
(aWbWe A ac € E(G)) = ab,bc € E(G). Roberts (1971) shows that a graph G is an
indifference graph iff G is compatible with some linear order. Observation 2.1 is exactly the
compatibility condition, and Roberts (1971) observes that this is equivalent to Goodman’s

weak mapping rule.

The [ component of vertex v, denoted va), where GG is a realization and [ is a line
containing v in G, is the subgraph of G obtained as follows: Remove all edges incident to v

on lines other than [, and take the component containing v.

If [ is the horizontal [resp., vertical] line containing v then we denote va) as Gl(lv) resp.,

G

Observation 2.2 (Triangulation): Suppose G is a triangulated realization with vertex a.
Then

L and Iy are .different . Ggf) \ {a} and Gg:) \ {a} are disjoint and
lines containing a nonadjacent, i.e. there is no edge connecting them

(Informally, this says that a triangulated p-d GIG cannot ”grow back into itself”.) [ |

Observation 2.3 (Nonrigidity): Suppose G a is a triangulated realization. Then we may

assume no two adjacent vertices have distance exactly € apart. [ |
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We will assume nonrigidity for any triangulated realization.

We now proceed to definitions and three observations about operations on realizations:
slide, bend, and concatenation. A direction about vertex v, where v is in a realization, is a
ray that is parallel to some axis and has endpoint v. For example, the two directions about

v on its horizontal line are the left and the right.

A direction about a vertex will sometimes be thought of as the x; or —x; direction for
some component x;. Thus, if d is a direction about v and v is translated, we continue to let

d be the new direction about v that is parallel to and in the same direction as the former d.

To say that we shift the realization G about vertex v along direction d, where d is a
direction about v in G, means the following. Let W be the vertices of U{V(Gl(v)) : [ is a line
containing v but not the line containing d}. Translate each vertex of W the same distance

and in the same direction as d.

To say that we slide the realization G about vertex u to the other side of w, where u and
w are adjacent in G, means to shift G about u along the direction toward w so that u is on

the opposite side of w.

To say we preserve the structure of a realization G means that, if adjustments are made
in that some vertices are transformed to new positions, then the edge set and betweenness
relationships remain unchanged and adjacent vertices, modulo at most a translation and/or

rotation, remain on the same common line.

Observation 2.4 (Sliding): Suppose G is a triangulated realization with adjacent vertices

uw and w on line [. Suppose N;[u] = Nj[w], where N, is the closed neighborhood restricted

9



to line [. Then G can be slid about u to the other side of w, followed by a finite series of
shifts, such that the structure is preserved except betweenness is altered for those triples on

[ involving both u and some vertex between the original and new positions of . [ |

The planar rotation of direction d' onto direction d in IR, where p > 2 and each direction
is the plus or minus direction of some component, is the transformation defined as follows:
Suppose d' is +x; and d is +x; (their signs may differ). Suppose x = (z1,...,2,). Then

X < XA where A is the planar rotation matriz of d' onto d, which is the identity matrix

0 +1
F1 0

where the upper right entry a;; is +1 if d' and d agree in sign and —1 otherwise.

except the ij submatrix of A is

To say that we bend the realization G about vertex u from direction d' onto direction d,
where d' and d are (distinct) directions about u in G, means the following (see Figure 2.1).
Define Gf;f) as follows (this is similar to the definition of Gl(“)): Remove all edges incident to
u on directions about u other than d’, and take the component containing u. Then for each
v E G,(;,‘), transform v by the planar rotation that rotates d' onto d relative to u. That is,
X, < (%, — X4)A + x, where u is at x,, v is at x,, and A is the planar rotation matrix of

d' onto d.

Observation 2.5 (Bending): Suppose G is a triangulated realization, u, d’, and d are as
in the definition for bending G about u from d' onto d. Suppose also there is a vertex w
beside u along d’' where w is adjacent only to u along the direction toward u. Let d be the

direction about u away from w.

10



Then G can be bent about u from d’ onto d, followed by a finite series of shifts, such that
the structure is preserved. Moreover, u has no vertex beside it along d’, and the vertices

connected to u using only edges on d in the original realization were not rotated. [ |

The concatenation of graphs G and G, where V(G)NV (@) = 0 and v and o are designated

vertices of G and G, respectively, is the graph obtained by identifying v and v.

Observation 2.6 (Concatenation): Suppose G is a triangulated realization with vertex
v where D = {d,...,d,} is the set of directions about v, each having a vertex beside v.
Suppose G is a triangulated realization with vertex & where D = {621, o ci,n} is the set of
directions about ©, each having a vertex beside #. Suppose further that V(G) NV (G) = 0
and DND = 0 (here each direction is thought of as the +xz; or —z; direction for some

component ).

Then translating G so that v and o coalesce and are identified, followed by a certain finite
series of shifts, yields a realization of the concatenation of G' and G that preserves the

structures of G and G (and adds no new edges). [ |

Every use of the terms slide, bend and concatenate will be according to the conditions
in Observations 2.4 through 2.6. That is, we perform the operation so that the structure is

preserved as stated in the corresponding observation.
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3 Characterization by Forbidden Subgraphs

This section contains five lemmas followed by theorems that characterize 2-d and p-d

GIG’s in terms of forbidden subgraphs.

We denote by £(C), where C is a set of cliques in a graph G, the intersection graph of the
edges of the cliques of C. That is, V(E(C)) = C and C1Cy € E(E(C)) whenever Cy and C,

are edge-intersecting cliques of G (here C} and Cy are viewed as complete subgraphs of G).

The following lemma will be a crucial element in proving the main results of this chapter.

Lemma 3.1 (Roberts, 1969):

G contains an extreme point (in fact, two non-

i i 1 h . . .
Gis a triangulated graph —> { adjacent extreme points if G is not complete) [ |

The simple proofs of the following two lemmas are omitted; proofs can be found in

Peterson (1995).

Lemma 3.2: Suppose C is a set of cliques in a p-d GIG G. Then
£(C) is connected = The vertices in C induce an indifference graph

(In this case, £(C) is a path.) In particular, a complete subgraph in a p-d GIG is realized on

a line. I

We will use the last statement of the lemma often and without explicit mention.

12



Lemma 3.3: Suppose G is a triangulated realization with vertex v, and [ is a line containing

v. Then the following two statements hold.

(1) Any adjacency between va) and G \ va) is by an edge incident to v (by an edge that

is not along [).

(2) Any path from v whose first edge is along line [ is in Gl(v). |

Figure 3.1 shows four graphs: A 4-fan (also called a gem), pyramid (also called K 3),
cat, and devil. (The darkened edges are meaningless in this section.) We denote by F a

family of graphs consisting of these four graphs and a G,.

Lemma 3.4: Suppose G is a graph and p € IN. Then

G € F = G is not a p-d GIG

Proof: Suppose G is any of the five graphs in F and C is the set of cliques in G. Observe
that £(C) is connected, so by Lemma 3.2 if G is a p-d GIG then it is an indifference graph.
But G is either a Gy, or it contains an induced claw (if G is a 4-fan, pyramid, or cat) or an

induced net (if G is a devil), violating Theorem 1.1. [ |

We denote by Dy a class of graphs, each having a designated vertex called a center point,

defined inductively as follows:

Define D5® as the set of two graphs I and IT shown in Figure 3.2. For each the center

point is the vertex labeled c.
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Define D™ for i € IN as Do) UL® where L® is the set of graphs having the induced
form I11 or IV shown in Figure 3.3. For each the center point is the vertex labeled ¢. The
graphs D01, D§i_1), and Déi_l) shown are each a graph in D,V with center points u, u,
and w, respectively. (The form of the graph shown is induced, so, for example in Figure 3.3,

no vertex of 11 explicitly depicted, except for u, is contained in or adjacent to D(i_l).)

Define Dy := D;® = U{D," : i € IN}.

Lemma 3.5: Suppose G is a triangulated GIG with vertex c¢. Then

G contains an induced

vertices beside it, that is, ¢ has neighbors D € D, with center point ¢

In every (2-d) realization ¢ has at least two
{
on at least two directions about ¢

Moreover, in this case, there are two vertices beside ¢ in any realization of D.

Proof: Every use of the term realization in this proof refers to a 2-d GIG realization. Recall

that we are assuming nonrigidity (Observation 2.3).

(=) We prove this by induction on the number of vertices in G. If G has only three
vertices, one of which is ¢ and the other two of which are beside ¢ in any realization, then it

is immediate that G must be a I.

Suppose G has more than three vertices. Take a realization of GG; by hypothesis ¢ has two
vertices beside it. Suppose G is I-free where ¢ is the center point — that is, ¢ is simplicial.
Then all vertices adjacent to ¢ are themselves adjacent, and are on the same line in the
given realization, WLOG a horizontal line. Take (the unique) two such vertices separated
by maximum distance. Call these vertices u and w, and say u and w are to the left and to

the right of ¢, respectively. See Figure 3.4.
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Suppose u has no vertex beside it to its left. Then, using weak mapping, Ny[u] = Ny[c]|
where Ny, is the closed neighborhood restricted to the horizontal line containing {u,c, w},
so by Observation 2.4 we can slide G about ¢ to the left of u. Then ¢ has only one vertex
beside it, a contradiction. Thus u has a vertex u’ beside it to its left and, similarly, w has a

vertex w’ beside it to its right.

If ' and w' are each adjacent to some neighbor of ¢ other than u and w, respectively,
then we have a II. (By weak mapping, the neighbors of «’' and the neighbors of w' are

distinct.)

Suppose exactly one of v’ and w’, WLOG w’, is adjacent to some neighbor of ¢ other
than u or w. Then the only neighbor of u' to the right is u. See Figure 3.3, graph form I71.
Discard G \ {u} from the realization, leaving a realization of G \ (G\(,“) \ {«}) in which
u has no vertical neighbors. Now suppose there is a realization of Gs,u) such that v has at
most one neighbor beside it, WLOG below u. By Lemma 3.3 (1), the only edges between
G and G \ (Gs,u) \ {u}) are incident to u. Thus, by Observation 2.6, we can concatenate
the realizations of G\ and G \ (G&u) \ {¢}) and obtain a realization of G in which adjacent
vertices from either of the two realizations are, modulo translation, in the same positions in
the new realization of G. In particular, » has no neighbor above it. Now by Observation
2.5 we bend G about u from the left onto the direction above, by Observation 2.4 we slide
G about ¢ to the left of u, and ¢ has only one vertex beside it, a contradiction. Thus in
every realization of Gs,u), u has at least two vertices beside it. By the inductive hypothesis,
G contains an induced D € D, with center point u. By triangulation, the D is disjoint
from and nonadjacent to U, where U is the set of vertices connected to and on the same

horizontal line as u. Thus we obtain a graph having form I71.
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Finally, suppose neither u' nor w’ is adjacent to some neighbor of ¢ other than u or w.
Then by a similar argument applied to both directions about ¢ we obtain a graph having

form IV.

(<) The proof proceeds by induction on i in Dy, The inductive hypothesis is that
in any realization of D, where D € D, for any 7' < i and has center point ¢, there are
two vertices beside ¢ in any realization of D. (This will also prove the last statement of the

lemma.)

In any realization of I, it is immediate that ¢ must have two vertices beside it. In any
realization of IT all vertices are on a single line, by Lemma 3.2. The pair {w,w'} must be
on the same side of ¢ because w' is adjacent to w and not to c¢. Similarly {u,u'} must be
on the same side of ¢. By weak mapping the two pairs cannot be on the same side. This

establishes the basis step.

Now suppose ¢ > 1. Consider any realization of I11. The vertices right of ¢ in Figure 3.3
must all be on the same side of ¢ in any realization because they are adjacent to w', which is
not adjacent to c. WLOG they are on the right side, as shown. Thus ¢ has a vertex beside
it to the right. The vertex ' must, by weak mapping, be adjacent to u on some direction
about u other than the direction toward c. By the inductive hypothesis the realization of
DU=1 has two vertices beside u that, by weak mapping, are in directions about « other than
the right and the direction toward u'. Thus u cannot be right of ¢ or five directions about u

would be required, which we don’t have. Thus ¢ has a vertex beside it to the left.

The argument for a graph having form IV is similar. [ |

Define E5 as the class of graphs having the induced form shown in Figure 3.5, where D,
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and D, are each a graph in Dy and they intersect only at their common center point ¢. The

vertex labeled ¢ is the common center point for D; and D-.

We can now give a structure theorem for triangulated GIG’s. The degree of a vertex is

the number of edges incident to it. A pendant vertex is a vertex with degree one.

Theorem 3.6: Suppose G is a triangulated graph. Then

G is a GIG < (G is F- and E,-free

Proof: Every use of the term realization in the proof refers to a realization of a (2-d) GIG.

(=) By Lemma 3.4, G is F-free, since any induced subgraph of a GIG is a GIG. Now
suppose E € E,, as shown in Figure 3.5. By Lemma 3.5, the D; and Dy each require two
directions about the center point c¢. Since Dy and Dy are disjoint and nonadjacent, by weak
mapping none of these directions are the same. Thus the D; and D, require four directions
about ¢. Again by weak mapping, the other neighbor of ¢ must be along another direction

about ¢, which we don’t have.

(<) Suppose G is F- and Ea-free. We use induction on the number of vertices. By
Lemma 3.1, G’ contains an extreme point a. Let C be the clique containing a, and let
C'" = C\ {a}. Let Z be the set of vertices adjacent to at least two vertices of C' but not
adjacent to a — these are the vertices that can be z in the definition of extreme point above.
Now by the inductive hypothesis G' := G \ {a} is realizable as a GIG. We may assume
there is no other vertex @’ in G with the same closed neighborhood as a. For otherwise o

is also simplicial and thus all its neighbors must be realized on a single line; by nonrigidity
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(Observation 2.3) we can place a close to @' in a realization of G' and obtain a realization of
G. Thus, for any two vertices z,y € C', there is a z € Z such that zz,yz € G and az ¢ G.

There are five cases.

Case 1: |C'| = 1, that is, a has only one neighbor x. If there is a realization of G’ such
that x does not have four neighbors beside it, then we can place a in the vacant direction
about = such that it is adjacent only to x. Suppose in every realization of G’, x has four
neighbors beside it. Take a realization of G'. Then G4 contains the two vertical neighbors

of z. Discard Go+™ \ {z} from the realization, leaving a realization of G’ \ (G+*)

in which x
has no vertical neighbor. Now suppose G(,(‘T) contains no induced D; € Dy with = as center
point. Then, by Lemma 3.5, there is a realization of G\ such that z has at most one
neighbor beside it, WLOG below it. By Lemma 3.3 (1), the only edges in G between Gi®
and G'\ (G(,(x) \ {z}) are incident to x. But the concatenation of the realizations of these
two graphs at x, according to Observation 2.6, yields a realization of G’ in which z has no
neighbor beside and above it. This violates our assumption that x has four vertices beside
it in every realization. Thus G(,(‘T) contains an induced D; € Dy with x as center point.

Similarly, G,

contains an induced Dy € Dy with x as center point. By triangulation, the
Dy and D, are disjoint and nonadjacent except by their common center point x. These with

a yield an induced E € Ej, a contradiction.

In cases 2 through 5, |C’| > 1, and we fix a realization of G'. WLOG C" is on a horizontal
line. Let x and y be the leftmost and rightmost vertices of C’, respectively. Observe that a

is adjacent at most to vertices between x and y.

Case 2: The vertices of C" are all together — that is, no vertex not in C' is between any

vertices of C' — and every vertex of Z is on the same side of C'. WLOG Z is on the right
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side of C". Figure 3.6 depicts case 2. Let z be the vertex beside y to the right. Since z2' € G
for some 2/ € Z and 2’ is not left of z, we have by weak mapping that xz € G. Now if z
has no vertex beside it to the left then by nonrigidity (Observation 2.3) we can place a just
left of x, and we have a realization of G. Thus we may assume z has a vertex u beside it
to the left. Since wu is left of C’ we have that u ¢ Z, so u is adjacent only to z to the right.
Suppose G(,(I) contains no induced D € Dy with x as center point. We proceed as in case 1
to obtain a realization of G’ where x has no vertex beside and above it, and the betweenness
relationships on the horizontal line containing x are preserved. Now by Observation 2.5 we
bend G' about x from the left onto the direction above, then place a left of x, and we have
a realization of G. Thus we may assume G contains an induced D € D, with x as center
point. By triangulation, the D is disjoint from and nonadjacent to {u, z} and C’, except by
its center point x. But then {u,z, D, a,z} induces an E € Es where D; = D and Dy is a I,

a contradiction.

Case 3: The vertices of C' are all together in the realization, there are vertices of Z on
both sides of C', and there are (at least) two nonadjacent vertices of Z. By weak mapping,
any two nonadjacent vertices of Z are on opposite sides of C'. Figure 3.7 depicts case 3. Take
a maximal subset of vertices Z’ of Z that are all adjacent to x, y, and each other. Observe
() #£ Z' C Z since some vertex of Z is adjacent to x and y and by case assumption. Then,
using weak mapping, there is WLOG a vertex of Z’ to the right of y and the leftmost vertex
z1 of Z is not in Z'. Let z; be the rightmost vertex of Z'. By maximality of Z’ and weak
mapping, 212, ¢ G. By definition of Z, 21z, 21y’ € G for some vertex y' € C'\ {x} (possibly

'

v = 1vy). Now 3’22 € G since zz5 € G and by weak mapping. But then {2,z,a,y, 22}

induces a pyramid, a contradiction. Thus case 3 cannot occur.
Case 4: The vertices of C' are all together in the realization, there are vertices of Z on
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both sides of C', and all vertices of Z are pairwise adjacent. Figure 3.8 depicts case 4. Let
21 be the leftmost vertex of Z and z; be the rightmost vertex of Z. By case assumption

2129 € G, and by weak mapping all vertices in between are adjacent.

Case 4a: Suppose z; has no neighbor to the left and 2z, has no neighbor to the right. By
Observation 2.4 we can slide G' about each of the vertices of Z to one (either) side of C' and
we are in case 2. Thus we may assume that case 4a does not hold, so for the rest of case 4

we assume WLOG that z; has a neighbor u beside it to the left.

Case 4b: Suppose ux € G. Since u ¢ Z,uy ¢ G. But then, using weak mapping, we
have that {u, z1,z,a,y, 2o} induces a cat, a contradiction. Thus case 4b cannot hold, so for

the rest of case 4 we have that uz ¢ G.

Now we may assume that 25 has a vertex w beside it to the right, for if not then by weak
mapping and Observation 2.4 we can slide G' about each of the vertices of Z that are right
of y to the left of x, and we are in case 2. By an argument symmetrical to case 4b just above,

we may assume that yw ¢ G.

Case j4c: Suppose uz] € G for some 2| € Z\ {2} and z,w € G for some 2}, € 7\ {z}.
But then, using weak mapping, we have that {u, 21, 2], z,a,y, 2}, 2o, w} induces a devil, a

contradiction.

Case 4d: Suppose uz] € G for some 2] € Z\ {z1} and w is adjacent only to 25 to the left.
If by Observation 2.5 we can bend G’ about 2, from the right onto some other direction,
then by Observation 2.4 we can slide G" about each of the vertices that are right of y to the
left of z, and we are in case 2. Otherwise, by the same argument we used in cases 1 and 2,
there is an induced D € D» that is disjoint from and nonadjacent to {u, z1, 2], w} and C’,

except by its center point zy. But then {u, 21, 2], 2, a,y, 2, w, D} induces an E € Es where
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w is the pendant vertex, D; = D, and Dy is a IT (u and a are the two vertices of degree two

in I7), a contradiction.

By a symmetrical argument, the case where z,w € G for some 2, € Z \ {23} and u is

adjacent only to 2; to the right leads to a contradiction.

Case Je: Suppose u is adjacent only to z; to the right and w is adjacent only to 25 to the
left. By an argument similar to that in case 4d, we can either bend G’ about z; from the
left onto some other direction or bend G’ about z5 from the right onto some other direction,
and get into case 2, or there are induced subgraphs D', D € Dy where D’ is disjoint from
and nonadjacent to {u, zo, w} and C" except by its center point z; and D is disjoint from
and nonadjacent to {u, z;, w} and C” except by its center point z,. By triangulation (applied
to the vertical and horizontal components of either z; or z;) the D' and D are disjoint and
nonadjacent. But then {u, D', 21,2, a,y, 22, D, w} induces an E € Ey where w is the pendant

vertex, D; = D, and D, has form I1], a contradiction.

Case 5: The vertices of C' are not all together in the realization. Let Z' be the set of
vertices between x and y that are not adjacent to a. Figure 3.9 depicts case 5. We may
assume that in the given realization Z' is minimum, that is, there is no realization having
fewer vertices of Z between the vertices in C'. Thus, G’ cannot be slid about any vertex
in Z' to the left of x or right of y (unless G’ must be simultaneously slid about some other

vertex that is not between z and y to a position between z and y).
Let U be the set of vertices adjacent to and to the left of x.

Case 5a: Suppose that u'y’ € G for some u' € U,y € C'\ {z}, and v'2' ¢ G for some

z' € Z'. But then using weak mapping {u’,x,1’, a, 2’} induces a pyramid, a contradiction.

Case 5b: Suppose there is a ' € U such that v'2' € G for some 2/ € Z' and v’ is not
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adjacent to every vertex in C'; in particular, by weak mapping, v'y ¢ G. By Observation 2.4
we can slide G" about 2’ to the left of x, contradicting minimality, unless one of the following
holds. (1) There is a vertex u” € U such that v"2" ¢ G. But then {u", v, x,a,2',y} induces
a 4-fan, a contradiction. (2) There is a vertex w’ (to the right of y) such that z'w’ € G and

zw" ¢ G. But then, using weak mapping, {u', x,a, 2, y, w'} induces a Gy, a contradiction.

Observe that, since cases 5a and 5b do not hold, if ' € U is adjacent to any vertex right

of = then it is adjacent to y.

Case 5c: Suppose there is a v’ € U such that v’y € G and there is a v” € U such that
u"y ¢ G (and thus u” is adjacent to no vertex right of x). But then, using weak mapping,

{u",u',x,a,2' y} induces a cat, where 2’ € Z'.

Case 5d: Suppose that for all ' € U, v’ is adjacent to no other vertex in C’ but x. Then
v'w ¢ G for all ' € Uyw € C"\ {z}; in particular this is true for v’ = u where u is beside x
to the left. Suppose that by Observation 2.5 we can bend G about x from the left onto some
direction. We may assume there is no vertex w' (to the right of y) such that 2'w’ € G and
zw" ¢ G. For this is symmetric to case 5b, replacing v’ and y with w' and z, respectively.
Now, by Observation 2.4, we can slide G’ about some vertex of Z', say the leftmost vertex
2, to the left of x. But this would contradict minimality. Thus we cannot bend G’ about x
from the left onto any direction. Again by an argument similar to that in case 4d (and cases
1 and 2), there is an induced subgraph D € D that is disjoint from and nonadjacent to
{u,2'} (where 2’ € Z') and C" except by its center point z. But then {u,z, D, a, 2’} induces

an E € E, where D; = D and D» has form I, a contradiction.

Case 5e: Suppose that u'y € G for every v’ € U; by symmetry on what we have already

proved we may assume xw' € G for every w’ € W where W := the set of vertices adjacent
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to and to the right of y. Then, by Observation 2.4, we can slide G’ about any 2’ € Z' to the

left of  (or to the right of y), violating minimality.

This completes case 5 and the proof. [ |

We extend our work above to higher dimensions.

Suppose p € IN is given. Define D;, the same as in the definition of Dg, except L is the
set of graphs having the induced form I71' or IV’ shown in Figure 3.10. For each the center

point is the vertex labeled ¢. The graphs D](.ifl),j =1,...,p—1in III'" are each a graph in

(i-1)

Dp(i’l) and they pairwise intersect only at their common center point u. The graphs D ;

(i—1)

5 l,j=1,...,p—11in IV" are each a graph in Dp(i’l) and they pairwise intersect

[resp., D
only at their common center point u [resp., w]. If p = 1 then the D;’s (in I11I') and the

D, ;’s and Dy ;’s (in IV') are vacuous.
Define D, := D,>* = U{D," : i € IN}.

Define E;, as the class of graphs having the induced form shown in Figure 3.11, where
each D;,7 = 1,...,p is a graph in D, and they pairwise intersect only at their common

center point c¢. The vertex labeled c is the common center point for the D;’s.

The following theorem characterizes triangulated p-d GIG’s.

Theorem 3.7: Suppose G is a triangulated graph and p € IN. Then

G is a p-d GIG <= G is F- and Ey-free

Proof: Suppose p = 1. (=) Theorem 1.1 implies that G is F-free, since a 4-fan, a pyramid,
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and a cat each contain an induced claw and a devil contains an induced net. Now observe
that Dy contains, up to isomorphism, only four graphs: Graphs I, II, ITI" (with the D;’s
vacuous), and IV’ (with the D, ;’s and D ;’s vacuous). It follows that any £ € E; contains
an induced claw or net, and Theorem 1.1 implies that G is Eq-free. (<) This also follows
from Theorem 1.1, since F contains a GGy, a graph E € E; with D; having form I is a claw,

and a graph F € E; with D; having form IV is a net.

Suppose p > 1. We first adjust the proof of Lemma 3.5 so that it holds for GG a triangulated
p-d GIG with vertex ¢, as follows. In the (=) direction the argument proceeds exactly as
in the proof there until we reach the case where only one of u’ and w' is adjacent to some
neighbor of ¢ other than u or w. Recall that, by the concatenation argument, G\ contains
an induced D € Dy, with center point u that is disjoint and nonadjacent to U, where U is the
set of vertices connected to and on the same horizontal line as u. Now we apply this argument
not just to G™ but to Gfu) for each line [ containing u, except the horizontal line. We obtain
Dy,...,D,_1 € Dy where for j =1,...,p—1, D; and U are disjoint and nonadjacent except
by u. By triangulation, when ¢ # j, D; and D; are disjoint and nonadjacent except by wu.
Thus we obtain a graph having form ITI'. If neither v’ nor w’ is adjacent to some neighbor
of ¢ other than u or w, then by a similar argument we obtain a graph having form IV".

In the (<) direction the argument is the same as given in the proof of Lemma 3.5 with

(i-1)

;s require 2p — 2

the following modifications. For a graph G having form I7I', the D
directions, so sliding G about u to the right of ¢ would require 2p + 1 directions about wu,
which we don’t have. For a graph having form I'V’ the argument is similar. Thus Lemma

3.5 holds for G a triangulated p-d GIG with vertex c.

The proof of Theorem 3.7 proceeds like that of Theorem 3.6, using the extended version of
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Lemma 3.5. The only modifications are that, each time we use the concatenation argument
(in cases 1, 2, 4d, 4e, and 5d), we apply it p — 1 times instead of just once, similar to the
way we extended the proof of Lemma 3.5. In those cases we obtain a ITI' (instead of a I17)

or a IV’ (instead of a IV). [ |

We conclude the section with the following theorem.

Theorem 3.8: Suppose G is a triangulated graph. Then

G is a p-d GIG, some p € IN <= (G is F-free

Proof: (=) This follows from Theorem 3.7. (<) This also follows from Theorem 3.7 by

taking p > |V(G)|, in which case a graph E € E, cannot occur. [ |

4  Characterization by Tree-Clique Graphs

This section contains four propositions that characterize or partially characterize types
of tree-clique graphs. Theorem 4.5 then characterizes GIG’s in terms of a type of tree-clique

graph.

Recall the definition of tree-clique graph from section 1. Observe that G is not a tree-
clique graph: It is a straightforward check that no spanning tree is compatible. A 4-fan, a

pyramid, a cat, and a devil are each tree-clique graphs. The darkened edges in Figure 3.1
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indicate a compatible tree for each. Theorem 1.1 characterized indifference graphs in terms
of a class of tree-clique graphs. Thus tree-clique graphs extend indifference graphs, but in a

different way than do p-d GIG’s.

We introduce two variations of tree-clique graphs. A tree-clique path graph is a tree-clique
graph GG having a compatible forest F' for which every clique of GG induces a path in F'. We
call F' a path compatible forest, and the components of F' we call path compatible trees for
the corresponding components of G. A tree-clique indifference graph is a tree-clique path
graph G having a path compatible forest F' for which any two edge-intersecting cliques of G
induce a path in F'. We call F' an indifference compatible forest, and the components of F

we call indifference compatible trees for the corresponding components of G.

The graphs in Figure 3.1 are tree-clique path graphs; the darkened edges indicate the

path compatible trees. They however are not tree-clique indifference graphs.

A p-d GIG is a tree-clique graph, but the converse is not true. Indeed, unlike p-d GIG’s,
an induced subgraph of a tree-clique graph need not be a tree-clique graph. For example,
take any connected graph G that is not a tree-clique graph (an example is a Gy), add a
vertex, and join it to every vertex in G. The result is a tree-clique graph — the added edges
constitute a compatible tree. Letting G be a 4-cycle shows that the same is true for tree-
clique path graphs. Thus there need not be a realization for a tree-clique graph in the same
sense as there is for a p-d GIG, in which every induced subgraph of a realization is also a
p-d GIG. If, however, a tree-clique path graph is triangulated then every induced subgraph

is a tree-clique path graph (Peterson, 1995).

We say that G/F contains an induced J, where G is a graph, F' is a spanning forest of

G, and J is a graph with certain edges designated as forest edges, whenever some induced
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subgraph of G is (a graph isomorphic to) .J such that the designated edges are in F' and the

other edges are not in F'. We say that G/F is .J-free whenever G/F contains no induced .J.

We denote by J;, © = 1,2, 3,4, the graphs in Figure 4.1, where darkened edges indicate

forest edges.

Proposition 4.1:

(a) G is a tree-clique graph

(b) F is a compatible forest } = G/Fis Ji- and Jy-fiee

Proof: Suppose D is an induced diamond of G. (A diamond is a complete graph on four
vertices, minus one edge.) Let z,y be the vertices of degree two and u, v be the other vertices
in D. See J; and J; in Figure 4.1. It suffices to show that the two edges incident to = in D
cannot both be in F. Suppose in contradiction that these edges are in F'. Now there is some
clique A of G containing triangle yuv. Then there is a (u, v)-path in F' using only vertices in
A, since these vertices induce a connected subgraph of F'. Since x ¢ A, this path together

with the two edges adjacent to z in D yield a cycle in F', a contradiction. [ |

The converse of Proposition 4.1 is false, even for triangulated graphs. That is, if a graph
is J;- and Jy-free with respect to a given spanning forest, the spanning forest need not be

compatible. See Figure 4.2.

Proposition 4.2: Suppose G is a tree-clique graph. Then

(a) G is a tree-clique path graph F' is a compatible forest for G
(b) F is a path compatible forest such that G/F is Js-free
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Proof: (=) Suppose G/F contains an induced .J3. See Figure 4.1; we use the vertex labeling
shown there. Some clique A of G contains the four vertices. Then, because of vertex x in

Js, it is impossible for A to induce a path in F.

(<) Suppose F' is a compatible forest but is not path compatible. Then some clique A
of G induces a tree 7" in F that is not a path. It follows that some vertex x € A has degree

three in A NT’, which yields a .J5. [ |

Proposition 4.3: Suppose G is a tree-clique path graph. Then

(a) G is a tree-clique indifference graph F is a path compatible forest
(b) F is an indifference compatible forest for G such that G/F is Jy-free

Proof: (=) Suppose G/F contains an induced .J;. See Figure 4.1; we use the vertex labeling
shown there. There is some clique A of G' containing triangle zyu, and some clique B of G
containing triangle zyv. But because of vertex x in Jy, it is impossible for A U B to induce

a path in F'.

(<) Suppose F is a path compatible forest and A and B are two edge-intersecting cliques
of G. We first argue that the subgraph P of F' induced by the vertices of AN B is a path.
Suppose not. Observe that AN DB is a complete subgraph in G. By Proposition 4.2 (ANB)/P
has no induced J3, that is, no vertex has degree three in P. Thus P is the union of (at least
two) vertex disjoint paths. Take two vertices s and ¢ that are disconnected in P. By definition
of compatible forest, there is an (s,t)-path in F using only vertices of A. Since s and ¢ are
disconnected in P, this (s,t)-path must include some vertex a € A\ B. Similarly, there is
an (s,t)-path in F' using only vertices of B. But then there are two (s,t)-paths in F' that

are different (because of a), which implies that a cycle in F' exists. This is a contradiction,
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so P is a path.

Now suppose F' is not indifference compatible. Suppose A U B does not induce a path
in F. See Figure 4.3. Using that F is path compatible and P is a path, we see that for (at
least) one of the endvertices x of P, zu,zv € T for some u € A\ B and v € B\ A. Let y be
the vertex adjacent to x in P. By Proposition 4.2, {z,y,u,v} cannot induce a J; in G/F,

so uv ¢ G. But then these vertices induce a Jy. [ |

A walk of a graph is a finite sequence of vertices where each consecutive pair of vertices
is adjacent. Thus, a path is a walk in which no vertex appears twice. The endvertices are
the first and last vertices. Every vertex that appears between the endvertices are interior
vertices. (In a walk, a vertex may be both an endvertex and an interior vertex.) Vertices that
are next to each other in the sequence are consecutive. It is well known that the endvertices
of a walk are the endvertices of some path that uses only (but not necessarily all) vertices

of the walk.

We present one more proposition, on triangulated tree-clique path graphs, before pro-

ceeding to the main result of the section.

Proposition 4.4: (G is a tree-clique indifference graph = G is triangulated

Proof: Suppose GG has a hole Z and T' is a path compatible tree for the component containing
7. We show T is not indifference compatible. Let Z = xy...x,_;. Edge x¢z; is in a clique
containing no vertices in Z except zp and x;. Thus there is an (zg, z1)-path Py in T using
no other vertices in Z, and the vertices of Fy; are a complete subgraph in GG. Similarly there

is an (z;, x;41)-path P;;4; in T for each i (‘each ¢’ means i = 0,...,n — 1, and all addition
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is modulo n).

We first show that F,; and P, , share an edge incident to x;. Suppose in contradiction
that z1v € Fy; and zyw € Py where v # w. Using the rest of P from w to x5, then
P it1,1=2,...,n—1, and then Py, from z, to v, we obtain a (w, v)-walk in 7" not involving
x1. Thus there is a (w, v)-path in T not involving ;. But this with z; yields a cycle in T, a
contradiction. (Note that this implies zox; ¢ T, otherwise P, consists of edge zox;, which

is impossible since P; » does not use xy.) Similar results hold for each z;.

Suppose that, for some ¢ and j, the internal vertices for P, ;;; differ from the internal
vertices for P; ;1. Then WLOG Fy; and P, » differ in their internal vertices. See Figure 4.4.
Write Py as yoyi - - - YpYp+1 (Where yo = xp and y,11 = x1) and Pro as Ypi1¥p - - - Yp W . . . To
where w ¢ {y1,...,y,} and 0 < [ < p (it is possible that w = x5 if | # p — 1). Note that
Yp—i—1Yp—i1+1 € G since both vertices are in Fp; and are thus in a common clique. Similarly
wyp—1+1 € G since both vertices are in P, 5. By Proposition 4.2 using {y,—i—1, Yp—1, Yp—1+1, W},

Yp—1—1w ¢ G. Then by Proposition 4.3, T" is not indifference compatible, and we are done.

Suppose the internal vertices for the P;;;,’s are all the same. If there is only one (com-
mon) internal vertex y for each path then, using that z1x3 ¢ G since Z is a hole, {1, xo, z3,y}
induces a J; in G/T. Then by Proposition 4.3, T' is not indifference compatible, and we are
done. Now suppose there are p > 2 internal vertices. Then these vertices form a path in T
let the path be y; ...y,. Observe that, for each i, x;y; € T or x;y, € T. Otherwise z;y, € T
for some ¢, 1 < g < p, and a cycle in T will necessarily occur. WLOG x1y; € T. Observe
that, for each i, {z;,y1,...,yp, Tiz1} is a complete subgraph in G. If zoy, or xoy; € T,
WLOG =3y, € T, then Proposition 4.2 is violated using {z1, z2, y1,y2}. Thus x¢y,, T2y, € T.

Then, since xyzy ¢ G and applying Proposition 4.3 to {zo, T2, Yp, Yp—1}, T is not indifference
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compatible. |

Theorem 4.5: Suppose G is a graph. Then the following are equivalent.
(a) G is a triangulated p-d GIG, some p € IN.
(b) G is triangulated and F-free.

(c) G is a tree-clique indifference graph.

Moreover, given any triangulated realization there is an indifference compatible forest F
— and vice-versa — such that vertices are beside each other in the realization iff they are

adjacent in F'.

Proof: The equivalence (a)<(b) is Theorem 3.8. We prove the last statement of the theo-

rem, which also proves the equivalence (a)<(c).

To prove the statement without the vice-versa, use the edges between vertices that are
beside each other in the given realization of G. Clearly these edges define a spanning sub-
graph for which there is a path between any two connected vertices. Suppose there is a hole
Z. By our construction, there must be a vertex v € Z such that the edges incident to v in
C' are on two different lines [; and l,. But by Lemma 3.3 (2), Ggf) and ng) both contain C|,
violating triangulation. Thus it is a spanning forest. By Lemma 3.2 and weak mapping it is

indifference compatible.

To prove the vice-versa part of the statement, we use induction on the number of vertices.
Suppose G is not connected. We apply the induction hypothesis to the components of G

separately, place the realizations of the components sufficiently far apart so they do not
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interfere, and we are done. Thus we may assume G is connected and F' is a spanning tree 7.
By Proposition 4.4 (G is triangulated, and so by Lemma 3.1 it contains an extreme point a.
Let C be the clique containing a. By Proposition 4.2 the degree of a in the given indifference

compatible tree T is either one or two. We consider the two cases.

Case 1: The degree of a in T is one. Let x be the neighbor of a in T. Remove a from
G to obtain G’ and a new spanning tree 7". Let C' = C'\ {a}. It is immediate that 7" is a
compatible tree for G, and by Propositions 4.2 and 4.3 it is indifference compatible. By the
induction hypothesis, G’ is realizable as a triangulated p-d GIG with vertices beside each
other iff they are adjacent in 7". If = is the only vertex of C’, that is, a is adjacent only to x
in G, then a can be placed beside x using a new dimension and we are done. Thus we may
assume |C'| > 1. See Figure 4.5. Now z is an endvertex of the path in 7" induced by C’,
else the two vertices of C" adjacent to x in T" together with = and a violate Proposition 4.2.
WLOG the other vertices of C” are (directly) to the right of x in the realization of G'. If
has no vertex u beside it to the left, then place a close to and to the left of x (recall that
we are assuming nonrigidity, Observation 2.3). Suppose there is such a u. Then ux € T’
and so uz € T as well. Also uz’ ¢ G where 2’ € C' is the vertex beside z to the right,
else Proposition 4.3 is violated using {a, u, z,2'}. Thus, by Observation 2.5, we can bend G’
about x from the left onto some other direction — a new dimension may be required — and

we place a close to and to the left of x.

Case 2: The degree of a in T is two. Let x and y be the two neighbors of a in T. By
Proposition 4.1, x and y have no common neighbor z where az ¢ G. Then, by definition of
extreme point, at least one of x and y, WLOG =z, is simplicial and in the same clique C as
a. Now remove a to obtain G' from G and add zy to obtain 7" from T (xy € G because a

is simplicial). It is immediate that 7" is a spanning tree for G'. To see that it is indifference
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compatible, suppose two (possibly equal) edge-intersecting cliques of G’ induce P’ in T". The
corresponding cliques in G induce a path P in T. (Note that corresponding cliques A of G
and A’ of G’ are identical, except where A = C' and A’ = C".) If P does not include a then
it does not include =, so P’ = P. If P includes a and consequently z, but not y, then a is
pendant in P so P' = P\ {a}. If P includes a, z, and y then zay in P is replaced by zy in

P'. Thus, in any case, P’ is a path so 7" is indifference compatible.

By the induction hypothesis, G’ is realizable as a triangulated p-d GIG with = and y beside

each other. We place a between z and y and close to = to obtain the desired realization. |

5 Partial Characterization by Extreme Points

In this section we investigate extreme points and reduced graphs of p-d GIG’s, as mo-
tivated by Theorem 1.2. We present two propositions. The first characterizes the role of

extreme points in p-d GIG’s. The second is a partial analogue of Theorem 1.2.

Recall the definition of reduced graph (Section 1) that [z] denotes the set of vertices with

the same closed neighborhood as x.

Proposition 5.1: Suppose G is a triangulated p-d GIG, some p € IN, and a is a vertex of

G. Then the following are equivalent.
(a) Vertex a is an extreme point of G.

(b) In every realization of GG, some o’ € [a] has at most one vertex beside it.
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(c) In every indifference compatible forest F' for G, some a’ € [a] is a pendant or isolated

vertex of F'.

Proof: The equivalence (b)<(c) follows from Theorem 4.5. We show (a)<(b).

(a)=-(b) Suppose a is an extreme point. Then all the vertices of [a] are extreme points.
WLOG the vertices of [a] are on a horizontal line, and let u and w be the leftmost and
rightmost vertices of [a], respectively (v = w if |[a]| = 1). Vertex u has no neighbor in any
other dimension or else it is not simplicial; similarly for w. Suppose w has vertex y beside
it to the right; if not we are done with o’ = w. Now suppose in contradiction that u has a
neighbor x beside it to the left. Since x and y are not in [a], they are each in a clique other
than the one containing [a]. Since u,w, a all have the same closed neighborhood, ax, ay € G.
Then there is a vertex z where zz,yz € G and az ¢ G. Then z is on the horizontal line
containing [a]. But by weak mapping (Observation 2.1) there is no place such a z can exist,

a contradiction.

(b)=-(a) If a is isolated then it is extreme. Thus we may assume a (and each vertex
in [a]) has at least one vertex beside it. Given a realization, suppose a' € [a] has only one
vertex beside it, WLOG to the right. Then every vertex of [a] is to the right of a’. Let a"”

be the rightmost vertex of [a]. It suffices to show o’ is extreme, for a is extreme iff o' is.

Suppose a'x,a'y € G. Then one of z,y is further to the right, and by weak mapping it

follows that xy € GG. Thus we have that o’ is simplicial.

Now suppose @’ is not extreme. Then there are vertices x and y that are each in some
clique other than the one containing o', and there is no vertex z such that xzz,yz € G and
a'z ¢ G. We may assume z is right of a”. For suppose z is between o' and a”. Then

by weak mapping Ny[z] = Ny[a"], where Ny is the closed neighborhood restricted to the
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horizontal line containing x. Thus, by Observation 2.4, G can be slid about x to the right of
a”. Similarly, we may assume y is right of a”. It follows that a” has a vertex beside it to the
right. Also, WLOG y is right of . Now by the contradictory assumption, any vertex right
of y that is adjacent to x is also adjacent to a’. Then Ny[xz] = Ny[a'], so by Observation 2.4
G can be slid about z to the left of a’. This yields a realization where every vertex in [a] has

two vertices beside it. This is a contradiction, so a’ is extreme. [ |

For p > 1, it is not true that every vertex with only one vertex beside it in a realization
(equivalently, being a pendant vertex in a indifference compatible forest) need be an extreme

point. See vertex a in Figure 5.1.

We precede the next proposition with a definition. Recall from Section 3 that, given a
set C of cliques in a graph, £(C) is the intersection graph of the edges of the cliques of C. A

linked set of a graph G is a set of cliques C such that £(C) is connected.

Proposition 5.2: Suppose G is a graph and p € IN. Then

For every induced subgraph H of GG, any linked set of

Gisapd GIG = { H* contains at most two extreme points of H*

Proof: It suffices to prove the statement only for G*, since any induced subgraph of G is

also a p-d GIG.

Let C be a linked set of G*. We may assume C is maximal, for if C contains three extreme
points of G* then so does any maximal linked set containing C. By Lemma 3.2, the vertices

in C induce an indifference graph I*. We show that for any vertex a € I*, if a is extreme
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in G* then a is extreme in I*. This will complete the proof, for if more than two extreme

points of G* are in I'* this violates Theorem 1.2.

Suppose a is extreme in G* and is in clique C' € C. Since «a is simplicial in G* it is
simplicial in I*. Suppose az,ay € I* (so ax,ay € G* also) where z, y are each in some clique
other than C. Then there is a vertex z € G* where xz,yz € G* and az ¢ G*. Some clique
C" # C contains triangle xyz, and C' edge-intersects with C at edge xy. By maximality of

C we have that C' € C and thus z € I*. It follows that a is an extreme point of I*. [ |

For p > 1 the converse of Proposition 5.2 is false. A 4-fan and a cat are counterexamples.

6 Conclusion

We have characterized triangulated p-d GIG’s in terms of forbidden induced subgraphs.
A triangulated graph G is a p-d GIG iff it is 4-fan-, pyramid-, cat-, and devil-free, and it
does not contain an induced subgraph that requires p + 1 dimensions. We then studied
tree-clique, tree-clique path, and tree-clique path-linked graphs. We found partial and full
characterizations of these graphs by forbidden subgraphs with respect to their compatible
forests. We then connected these concepts with p-d GIG’s. A graph is a triangulated p-
d GIG for some p iff it is a tree-clique indifference graph. Moreover, there is a natural
correspondence between indifference compatible forests and realizations of a p-d GIG. We
have also characterized the role of extreme points in p-d GIG’s. A vertex is an extreme point

in a triangulated p-d GIG iff in every realization some vertex equivalent to it, modulo closed
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neighborhoods, has at most one vertex beside it. Finally, a partial characterization of p-d
GIG’s is found in terms of extreme points. If a graph is a p-d GIG then for the reduced

graph of every induced subgraph, any linked set contains at most two extreme points.

Some questions remaining are:

(1) What other conditions are needed to characterize p-d GIG’s if they are not triangulated
or finite? Peterson (2003) characterizes p-d GIG’s where € = oo in terms of coloring of the
clique graph — the intersection graph of the cliques. A similar approach may be applied using

the intersection graph of the maximal linked sets.

(2) Can these results on GIG’s be applied to characterize or partially characterize grid graphs?
A grid graph is a GIG that can be realized with vertices at integral points and 1 < € < 2.
Grid graphs arise, for example, in the frequency assignment problem, where communication
stations are on a grid and there is frequency interference between adjacent grid points.
Recognition of grid graphs seems to be a difficult problem (Kennedy and Quintas, 1983) and

Clark, Colbourn, and Johnson, 1990).

(3) How can tree-clique or tree-clique path graphs be characterized by forbidden subgraphs, in

the same way that tree-clique indifference graphs are characterized in Theorem 4.57

(4) Is there a full characterization of p-d GIG’s in terms of extreme points, analogous to
Theorem 1.2 for indifference graphs? Roberts (1969) finds a characterization of indifference
graphs in terms of semiorders (a type of binary relation, which he uses to prove Theorem

1.2. A similar approach for p-d GIG’s may be applied.

(5) What (efficient) algorithms exist for finding the minimum p for which a graph is a p-d
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GIG?

(6) What (efficient) algorithms ezist for coloring p-d GIG’s?

We make two conjectures.

Conjecture 6.1: Recognition of a triangulated p-d GIG, p € IN, is a polynomial time

problem.

Conjecture 6.2: Suppose GG, p, and a are as in Proposition 5.1. Then the following state-

ment is equivalent to the statements given in Proposition 5.1.

(d) In every realization of G*,[a] has at most one vertex beside it.

Note that G* is a p-d GIG, since removing all but one vertex from each equivalence class
of G yields a graph isomorphic to G*. The sufficiency of (d) in Conjecture 6.2 follows easily
by an argument similar to the proof in Proposition 5.1 (b)=-(a). The necessity may follow by
extending any realization of G* to a realization of G, after some operations have been carried
out on the realization. This may require arguments involving bending and concatenation

like those in Lemma 3.5 and Theorem 3.6.
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